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ABSTRACT

The issue of parameter convergence in multivariable adaptive control is addressed

in a general framework. Parameter convergence is proved to be guaranteed if a

certain design identity has a unique solution and if the inputs satisfy persistency of

excitation conditions. The uniqueness of the solution of the design identity can be

obtained in general by using parameterizations which, although nonminimal, are

structured so as to guarantee uniqueness. This concept is illustrated with a direct

adaptive pole placement algorithm which is modified to guarantee uniqueness and

it is shown how the results can be used to establish stability and convergence pro-

perties of the algorithm.

Key words: Adaptive control, multivariable systems, pole placement, parameter conver-

gence, persistency of excitation, parameterizations.
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1. Introduction

The issue of parameter convergence in adaptive control has received some attention in recent

years (see, among others, [1] and [2] in discrete–time and [3] and [4] in continuous–time). It

was found that several single–input single–output schemes possessed exponential parameter

convergence properties, provided that persistency of excitation (or sufficient richness) condi-

tions were satisfied.

Although it is often argued that parameter convergence is not necessary in adaptive

control (boundedness and tracking being the only objectives of model reference adaptive

control, for example), there are important reasons to study this problem. First, exponential

stability guarantees a certain degree of robustness (cf. [4], [5]). In the presence of noise,

adaptive schemes exhibit parameter drift and a burst phenomenon (cf. [6], [17]) which can be

avoided if persistency of excitation conditions are met. The problem can also be avoided

using deadzones and projections, but only at the cost of additional prior information.

Another advantage of parameter convergence is that the closed–loop system actually

has the asymptotic properties for which the controller was designed. Indeed, consider the

case of a model reference adaptive scheme with an input signal that is constant over a long

period of time. While the tracking error converges to zero, the closed-loop poles may con-

verge to arbitrary locations. This may result in large transients when the reference input later

varies.

It is important to note that we address ourselves here to a strong form of parameter con-

vergence, namely uniform exponentialparameter convergence to the nominalvalues of the

parameters (also called correct, or true values). This form of convergence requires condi-

tions of persistency of excitation. Weaker conditions on the input signals result in weaker

forms of parameter convergence. For example, it is known that the parameters of the recur-

sive least–squares algorithm converge without further conditions than those needed for sta-

bility ([18]). In that case however, the parameters do not necessarily converge to their nomi-

nal values and the convergence is not exponential in general. The advantages of the strong

form of parameter convergence mentioned above, as far as robustness and asymptotic perfor-

mance are concerned, are lost in such cases, where the persistency of excitation conditions

are relaxed.

Very few rigorous proofs of stability have been published for multivariable adaptive

control algorithms and parameter convergence has not been established. In fact, parameter

convergence can often not be guaranteed for the existing schemes, even with sufficiently rich
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inputs. This happens because the parameterizations are not unique. In a model reference

adaptive control algorithm for example, this means that an infinite number of values of the

parameters exist such that model matching is achieved.

In the context of recursive identification, it was shown ([7]) that, using unique parame-

terizations, frequency–domain conditions on the inputs could be specified under which

parameter convergence was guaranteed. The parameterization used there had the additional

advantage of being minimal, i.e.,of requiring the minimal number of parameters necessary to

describe the class of systems under consideration. In direct adaptive control, minimality is

rarely achieved (even in the SISO case), but it was shown in [1] that it is only necessary for

the parameterization to be unique (rather than minimal) to guarantee parameter convergence

under suitable persistency of excitation conditions.

Contributions of the Paper

The first contribution in this paper is to extend the results of [1] to the multivariable case

(sections 2, 3 and 4), thereby establishing a general framework for the convergence analysis

of a large class of adaptive control algorithms. Specifically, the results show that parameter

convergence is directly related to the uniquenessof a certain design identity. This result is

important because it provides a criterion to guarantee parameter convergence and, further-

more, indicates that minimality is not itself necessary. For example, a single–input

single–output linear time–invariant system can be described by 2n parameters, where n is the

order of the system. However, parameter convergence can be achieved with a pole placement

algorithm with 4n parameters. This is obtained by giving sufficient structure to the

non–minimal model, so that uniqueness is guaranteed. This paper proves that the same prin-

ciple holds true for multivariable systems, and gives a general framework in which to test the

requirements for making exponential convergence of the parameters to their nominal values

possible.

The second contribution of the paper is to show how uniqueness can be guaranteed in a

specific adaptive pole placement scheme and to prove the stability and convergence proper-

ties of this scheme by applying the general results (sections 5 and 6). As noted above, exist-

ing direct adaptive control schemes do not guarantee uniqueness of the design identity.

However, we show how the adaptive pole placement scheme of [8] can be modified to

achieve this result.
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Two nontrivial modifications are incorporated in the scheme of [8]: the first consists in

restricting the column degrees of the elements of some polynomial matrices, taking into

account the knowledge of the observability indices of the plant. It is interesting to observe

the similarity to the situation that arises in recursive parametric identification. There, the

knowledge of the observability indices can be used to constrain the column degrees of a left

matrix fraction description of the plant, thereby leading to a canonical representation and to

the uniqueness of the parameterization. In fact, an interesting feature of a proof presented in

this paper is to show how known results on canonical forms can be used to guarantee the

uniqueness of a direct adaptive control parameterization (that is, the uniqueness of the solu-

tion of the corresponding design identity).

As opposed to the situation in identification, the constraint on the column degrees is

insufficient to guarantee uniqueness for the adaptive pole placement algorithm. It is found

that the order of a certain observer polynomial matrix in [8] also has to be modified to

guarantee uniqueness of the solution of the design identity. This second modification is not

obvious and rather technical, but is given in this paper.

We follow, as much as possible, the notation and terminology of [1] and [8], to which

this work is most closely related. The reader may wish to consult [1] in particular, for

motivation and for additional details on some of the techniques used in this paper.

2. A General Parameter Estimation Problem

We consider discrete–time, linear time–invariant systems modeled by the state equations

x (t +1) = As x (t) + Bs u (t)

y (t) = Cs x (t) + Es u (t) (2.1)

where u (t) is the (m × 1) input vector, y (t) the (p × 1) output vector and x (t) the (n × 1)

state vector. We assume that the system (2.1) is minimal. Let the controllability indices

µi , 1 ≤ i ≤ m and the observability indices νi , 1 ≤ i ≤ p be defined as usual (cf. [9]). Let

µ =
1 ≤ i ≤ m

max (µi ) the maximal controllability index, simply called the controllability index,

and ν =
1 ≤ i ≤ p
max (νi ) called the observability index. Such a system can also be represented by

the right matrix fraction description

P (D) . ξ(t) = u (t)

y (t) = R(D) . ξ(t) (2.2)
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where R(D) and P (D) are (p × m) and (m × m) real polynomial matrices in the unit delay

operator (i.e. D kx(t) = x (t −k)). Matrices R(D) and P (D) exist that have the following pro-

perties (cf. [9])

a) ∂cj R(D) ≤ µ j and ∂cj P (D) = µj , where ∂cj [ . ] denotes the maximal polynomial degree

in the j–th column,

b) P (0) is nonsingular,

c) The matrices R(D) and P (D) are right coprime.

The matrix P (D) can be further constrained, in particular so that it is in some canonical form

(cf. [10]). This will be discussed in section 5.

Structured Nonminimal Model

To introduce a general framework for the study of direct adaptive control algorithms, we

replace the minimal model (2.2) by a structured nonminimal modelof the form

[C (D) +
j = 1
Σ
ma

Aj (D) α j ] y (t) = [E (D) +
j = 0
Σ
mb

Bj (D) βj ] u (t) (2.3)

where ma and mb are positive integers, α j ∈ IRRr × p, βj ∈ IRRr × m, C (D) and E (D) are (r × p)

and (r × m) polynomial matrices with maximal degree l. Aj (D) and Bj (D) are (r × r ) poly-

nomial matrices of the form

Aj (D) = diag [aij (D)] , aij (D) =
k=1
Σ
l

aijk Dk , aijk ∈ IRR (2.4)

Bj (D) = diag [bij (D)] , bij (D) =
k=0
Σ
l

bijk Dk , bijk ∈ IRR (2.5)

The structured non–minimal model defined by (2.3), (2.4), (2.5) is an extension of the

single–input single–output model of [1]. There, it was shown that the simplified model was

adequate to describe several adaptive control algorithms. In section 5, we will show that the

multivariable adaptive pole placement algorithm fits into the generalized framework. The

integer r is equal to m, the number of inputs, in that case. In other cases, it may take different

values (for example, (2.3) may represent a left matrix fraction description, with r =p).

At this point, we let r and l be arbitrary integers, but it is assumed that, for

i = 1, 2 , . . . , r, the polynomials { aij (D) } j =1
ma are linearly independent over the reals. It is

assumed similarly that the { bij (D) } j =0
mb are linearly independent. These assumptions imply

that max { ma, mb } ≤ l.
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We assume that the plant can be represented by the model (2.3) for some given matrices

C (D), E (D), Aj (D) and Bj (D). One wishes to use the model (2.3) to uniquely estimate the

elements of the matrices α j , 1 ≤ j ≤ ma, and βj , 0 ≤ j ≤ mb, from the plant input–output

data. Clearly, (2.3) constitutes a model for the plant (2.2) if and only if the following design

identity is satisfied

[C (D) +
j = 1
Σ
ma

Aj (D) α j ] R(D) = [E (D) +
j = 0
Σ
mb

Bj (D) βj ] P (D) (2.6)

Clearly, the elements of the matrices α j and βj in (2.3) can be uniquely estimated only if

(2.6) has a unique solution { α1 , . . . , αma
, β0 , . . . , βmb

} . Conversely, whenever (2.6)

has a unique solution, we will show that the solution can be obtained by a direct estimation

algorithm which is exponentially convergent. This will be the focus of the ensuing discus-

sion.

Remark 1: We wish to emphasize that the problem of finding conditions which ensure that

(2.6) has a unique solution is quite different when the plant (2.2) is SISO (single–input

single–output) and when the plant is MIMO (multi–input multi–output):

In the SISO case,for given polynomials C (D) and E (D), a solution to (2.6) exists if the

polynomials R(D) and P (D) are coprime and if the degree of the polynomials

A (D) =∆ Σ Aj (D) α j and B (D) =∆ Σ Bj (D) βj are sufficiently large. Among all solutions of

(2.6), there is a unique solution { A (D), B (D) } with minimal degree. Therefore, to ensure

a unique solution of (2.6), it is sufficient to bound the degrees of the polynomials

Aj (D), 1 ≤ j ≤ ma, and Bj (D), 0 ≤ j ≤ mb.

In the MIMO case,(2.6) has a solution if the matrices R(D) and P (D) are right coprime and

if the degrees of the elements of the matrices A (D) and B (D) are sufficiently large. But, to

ensure the uniqueness of the solution, it is necessary to restrict the maximal and the minimal

powers in D of each element of A (D) and B (D). In other words, we can guarantee unique-

ness by restricting the maximal degree of each element in Aj (D) and Bj (D) and by choosing

some of the elements of α j and βj as zero. This fact will be made clearer in section 5.

For parameter estimation purposes, it is convenient to write every row of (2.3) as an

independent equation

[Ci (D) +
j = 1
Σ
ma

aij (D) αij ] y (t) = [Ei (D) +
j = 0
Σ
mb

bij (D) βij ] u (t) (2.7)

for i = 1, 2 , . . . , r, where Ci (D), Ei (D), αij and βij are the i–th row of the matrices C (D),
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E (D), α j and βj , and where the polynomials aij (D) and bij (D) are defined in (2.4) and (2.5).

These equations can be written as regression equations

φ
�

i
T
(t) θ

�
i
* = Ei (D) u (t) − Ci (D) y (t) , i = 1, 2 , . . . , r (2.8)

where

φ
�

i
T
(t) = [ ai 1(D) yT(t) , . . . , aima

(D) yT(t),

− bi 0(D) uT(t) , . . . , − bimb
(D) uT(t)] (2.9)

θ
�

i
* = [ αi 1 , . . . , αima

, βi 0 , . . . , βimb
]T (2.10)

As indicated in remark 1, (2.6) has a unique solution provided that the elements of

A (D) =∆ Σ Aj (D) α j and B (D) =∆ Σ Bj (D) βj satisfy some degree conditions. These condi-

tions depend on the adaptive control problem, and we will give specific conditions in the

case of the pole placement algorithm in section 5. The degree conditions imply that some

elements in the vectors θ
�

i
* , 1 ≤ i ≤ r are zero. We delete these zero elements from θ

�
i
* as

well as the corresponding elements from φ
�

i (t), and define the resulting vectors θi
* and φi (t),

respectively. (2.8) is then equivalent to

φi
T
(t) θi

* = Ei (D) u (t) − Ci (D) y (t) , i = 1, 2 , . . . , r (2.11)

Standard estimation procedures, such as the recursive least squares (RLS) algorithm, can be

used to estimate each of the parameter vectors θi
* using input–output data of the plant. It is

well–known (cf. [2]) that to insure the global convergence of the estimation algorithms, it is

necessary to satisfy a persistency of excitation condition. In section 3, we will introduce

linear systems called the associated–signal systemsof (2.11). Through the use of these sys-

tems, we will show in section 4 how the persistency of excitation condition can be satisfied.

3. The Associated–Signal System and Its Output Reachability

For each equation in (2.11), we define the associated–signal system, which is a linear system

in state-space form. Its input vector is u (t) (the input vector of the plant (2.1) or (2.2)) and

φi (t) is its output vector. Let the state of the associated–signal system be defined as the fol-

lowing (m(l +µ)) vector

xa(t) = [ξT(t −1), ξT(t −2) , . . . , ξT(t −l −µ)]
T

(3.1)

where ξ(t) is defined in (2.2), l is the same as in (2.4) and (2.5), and µ is the controllability

index of the plant (2.1). The matrices R(D) and P (D) (in (2.2)) can be written as
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R(D) =
k=0
Σ
µ

Rk Dk , P (D) =
k=0
Σ
µ

Pk Dk (3.2)

It follows from the first equation of (2.2) that xa(t) satisfies the discrete–time state equation

xa(t +1) = A xa(t) + B u(t) (3.3)

where

A =

�
�
�
�
�
�
�
�
�
�
�
�

Im(l +µ−1)

−P0
−1P1 −P0

−1P2
. . . −P0

−1Pµ

0

.

.

.

.

.

.

0 ... 0
�
�
�
�
�
�
�
�
�
�
�
�

, B =

�
�
�
�
�
�
�
�
�
� 0

.

.

.

.

0

P0
−1 �

�
�
�
�
�
�
�
�
�

(3.4)

By using (2.2), (2.4) and (2.5), it can be shown that the vectors φ
�

i (t) (in (2.9)) satisfy the

equations

φ
�

i (t) = C
��

i xa(t) + E
��

i u (t) , i = 1, 2 , . . . , r (3.5)

where C
��

i is the following ((pma + m(mb + 1)) × (m(l + µ))) matrix

C
��

i =

�
�
�
�
�
�
�
�
�
�

−bimb1 P0

...

−bi 01 P0

aima1 R0

...

ai 11 R0

−bimb2 P0 −bimb1 P1

...

−bi 02 P0 −bi 01 P1

aima2 R0 +aima1 R1

...

ai 12 R0 +ai 11 R1

. . .

. . .

. . .

. . .

−bimbl Pµ

...

−bi 0l Pµ

aimal Rµ

...

ai 1l Rµ
�
�
�
�
�
�
�
�
�
�

(3.6)

The element of C
��

i in the j–th row and k–th column is the coefficient of Dk in aij (D) R(D) for

j =1,..., ma. Similarly, for j = 0,..., mb the element in the ( j +ma + 1)–th row and k–th column

is the coefficient of Dk in − ( bij (D) −bij (0)) P (D). E
��

i is then the ((p ma + m(mb+1)) × m)

matrix

E
��

i =

�
�
�
�
�
�
�
�
�
�
�

− bimb0
. I

...

− bi 10
. I

− bi 00
. I

0

...

0 �
�
�
�
�
�
�
�
�
�
�

(3.7)
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where the elements aijk and bijk are defined in (2.4) and (2.5).

By definition, the associated–signal systemof the i–th equation of (2.11) is the system

xa(t +1) = A xa(t) + B u(t)

φi (t) = Ci xa(t) + Ei u (t) (3.8)

where the matrices Ci and Ei are obtained from the matrix C
��

i and E
��

i by choosing the rows

that correspond to the columns of φ
�

i
T(t) that were selected to form φi

T(t). It might be pointed

out that the state vector xa(t) and the matrices A and B are the same in all the

associated–signal systems.

Now, recall that a linear system is called output–reachableif and only if every vector in

its output space can be generated (reached) using a suitable input sequence. The following

theorem relates the uniqueness of the solution of the design identity (2.6) to the

output–reachability of the associated–signal systems.

Theorem 3.1

Assume that (2.6) is solvable.

The solution is unique if and only if all r associated–signal systems of (2.11) are

output–reachable.

Proof of Theorem 3.1: the proof follows the lines of the proof of theorem 4.1 for the scalar

case presented in [1] and is omitted here. �

Our original problem was to ensure that the estimation processes, which are based on

(2.11), converge. It is known ([2]) that algorithms such as the RLS algorithm yield a

sequence of estimates that converge exponentially fast to θi
* provided the sequence { φi (t) }

of regression vectors is persistently exciting. The question is to find input sequences

{ u (t) } such that all output sequences { φi (t) } of the (output-reachable) associated-signal

systems will be persistently exciting. This problem is solved in the next section.

4. Uniform Persistent Spanning Of Output–Reachable MIMO Plants

Consider the discrete–time, linear time–invariant plant

xa(t +1) = A xa(t) + B u(t)



-- --

- 10 -

ya(t) = C xa(t) + E u(t) (4.1)

where u (t) ∈ IRRm, ya(t) ∈ IRRpa and xa(t) ∈ IRRna . In particular, this plant represents the

associated–signal systems of section 3, with ya = φi , na = m(l + µ), etc. The system (4.1) can

also be represented by the difference equation

dna
ya(t +1) + dna−1 ya(t +2) + ... d1 ya(t +na) + ya(t +na+1)

= Gna
u (t +1) + Gna−1 u (t +2) + ... + G0 u (t +na+1) (4.2)

where di are the coefficients of a monic minimal polynomial for A, i.e.

a (z) = dna
+ dna−1z + ... + d1zna−1 + zna . The matrices Gi ∈ IRRpa × m are defined by

Gi =
k=0
Σ
i

di −k Mk , d0 = 1 (4.3)

where the matrices Mk are the Markov parameters, i.e.

[M 0 , . . . , Mna
] = [E, CB, CAB , . . . , CAna−1B] (4.4)

We use the following definitions

ya, j (t) = [ya(t +1) , . . . , ya(t +j )] (4.5)

u
�

k(t) = [uT(t +1) , . . . , uT(t +k)]T (4.6)

Uk, j (t) = [u
�

k(t +1) , . . . , u
�

k(t +j )] (4.7)

G = [Gna
, . . . , G0] (4.8)

d = [dna
, . . . , d1, 1 ]T (4.9)

Equation (4.2) can then be written as

G . u
�

na+1(t) = ya, na+1(t) . d (4.10)

Definition: The sequence { ya(t) } is called persistently excitingif there exist ε > 0 and

integers t 0 and N such that, for all integers i ≥ 0

λmin [ ya, N(t 0 + i N) ya, N
T (t 0 + i N) ] ≥ ε > 0 (4.11)

Since adaptation algorithms are known to be exponentially convergent provided that the

outputs of their associated–signal systems are persistently exciting, a natural question is to

find conditions on the inputs which result in this property. The following theorem addresses
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this issue.

Theorem 4.1

Assume that the plant (4.1) is output–reachable.

If there exist ε1 > 0 and integers t 1 and N ≥ na (m + 1) + m such that, for all integers i ≥ 0

λmin [Una+1, N −na
(t 1 + iN) Una+1, N −na

T (t 1 + iN)] ≥ ε1 > 0 (4.12)

Then,the sequence { ya(t) } is persistently exciting for every initial state xa(0).

Remark 2: Note that (4.11) and (4.12) are equivalent to

λmin

�
�
�
� t=t 0+iN+1

Σ
t 0+iN+N

ya(t) ya
T(t)

�
�
�
�

≥ ε > 0 (4.13)

and

λmin

�
�
�
� t=t 1+iN+1

Σ
t 1+iN+N−na

u
�

na+1(t) u
�

na+1
T (t)

�
�
�
�

≥ ε1 > 0 (4.14)

Therefore, theorem 4.1 shows that the persistency of excitation on ya can be transformed into

a similar condition on u
�

na+1, which depends only on the input vector u. The vector u
�

na+1(t) is

obtained by stacking the vectors u (t +1),..., u (t +na+1) on top of each other in a long vector.

Since the dimension of u
�

na+1 is (na+1) m, the "span" of the sum, N−na, must be greater than

or equal to (na+1) m, and therefore the condition of theorem 4.1.

Proof of Theorem 4.1

Let α ∈ IRRpa be a nonzero vector. Using (4.10)

αTG Una+1, N −na
(t 1) Una+1, N −na

T (t 1) GTα = αTG

�
�
�
� t=t 1+1

Σ
t 1+N −na

u
�

na+1
(t) u

�
na+1

T (t)

�
�
�
�

GTα

=
�
�
�
� t=t 1+1

Σ
t 1+N−na

( αT ya, na+1(t) d ) ( dT ya, na+1
T (t) α )

�
�
�
�
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≤ || d || 2

�
�
�
� t=t 1+1

Σ
t 1+N−na

|| αT ya, na+1(t) || 2
�
�
�
�

= || d || 2 αT

�
�
�
� t=t 1+1

Σ
t 1+N−na

ya, na+1(t) ya, na+1
T (t)

�
�
�
�

α

≤ || d || 2 αT

�
�
�
� t=t 1+1

Σ
t 1+N−na

j =t +1
Σ

t +na+1

ya( j ) ya
T( j )

�
�
�
�

α ≤ || d || 2 (na+1) αT

�
�
�
� j =t 1+2

Σ
t 1+N+1

ya( j ) ya
T( j )

�
�
�
�

α

≤ || d || 2 (na+1) αT [ya, N(t 1+1) ya, N
T (t 1+1)] α (4.15)

Since the system (4.1) is output–reachable, the matrix G has full row rank, and using (4.12)

λmin [ya, N(t 1+1) ya, N
T (t 1+1)] ≥

|| d || 2 (na+1)

1������������ λmin
�
� G Una+1, N−na

(t 1) Una+1, N−na

T (t 1) GT�
�

≥
|| d || 2(na+1)

λmin(G GT)������������ Una+1, N−na

T (t 1)

≥ ε1
|| d || 2 (na+1)

λmin(G GT)������������ > 0 (4.16)

If we repeat the proof with t 1 + iN instead of t 1, and let t 0 = t 1 + 1

λmin
�
� ya, N(t 0 + iN) ya, N

T (t 0 + iN)
�
� ≥ ε1

|| d || 2(na+1)

λmin(G GT)������������ = ε > 0 (4.17)

and the proof is completed. �

The following theorem shows that the results of theorem 4.1 can be extended to cover

situations where the input of the plant is calculated from an external reference input and state

feedback. Input conditions are transferred to the reference input, assuming that the feedback

gain matrix is held constant for sufficiently long periods between updates.
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Theorem 4.2

Consider an output–reachable linear plant (4.1). Let the input sequence u (t) be defined by

the control law u (t) = FN(t) xa(t) + v(t), where v(t) is an external input and where FN(t) is a

feedback gain matrix.

If the matrix FN(t) is bounded and changes value only at times ti = t 0 + i N, i = 0, 1, 2,...,

with N ≥ na(m+ 1) +m, and if the external input v(t) satisfies the condition that

λmin
�
� Vna+1, N−na

(ti ) Vna+1, N−na

T (ti )
�
� ≥ ε > 0 (4.18)

Then,the sequence { ya(t) } is persistently exciting for every initial state xa(0).

Proof of Theorem 4.2:The proof is similar to the proof of theorem 5.3 presented in [1] and

is omitted here. �

In the next sections, we show how theorems 3.1 and 4.1 can be used to prove the global con-

vergence of an adaptive control algorithm.

5. Adaptive Pole Placement for Linear Multivariable Systems

It is assumed that the following parameters are known: n, m, p, µi , i = 1, 2 , . . . , m and νi ,

i = 1, 2 , . . . , p. This is all the prior information required by the algorithm. The output of

the plant (2.2) is given by

y (t) = R(D) P−1(D) u (t) (5.1)

The desired closed-loop dynamics are given by

y (t) = R(D) P* −1
(D) v(t) (5.2)

where v(t) is the external input and P* (D) is a polynomial matrix that characterizes the

desired closed–loop pole locations. The control algorithm is an adaptive version of the con-

trol law

u (t) = Q−1(D) [ H (D) y (t) + K (D) u (t)] + v(t) (5.3)

where Q (D) is a fixed (m × m) polynomial matrix (all zeros of det (Q (D)) are outside the

unit circle) and where H (D) and K (D) are (m × p) and (m × m) controller matrices. The

design equation of the controller is

H (D) R(D) + K (D) P (D) = Q (D) [ P (D) − P* (D) ] (5.4)
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Since R(D) and P (D) are right coprime, there exist (m × p) and (m × m) matrices J (D) and

I +S(D) that satisfy the Bezout identity

J (D) R(D) + [I + S(D)] P (D) = I (5.5)

Using (5.1), (5.4) and (5.5) we get the following nonminimal model of the plant

[H (D) + Q (D) P* (D) J (D)] y (t) =

[ − K (D) − Q (D) P* (D) S(D) + Q (D)( I − P* (D))] u (t) (5.6)

This model is of the form (2.3). In this example, the general design identity (2.6) has the

form

[H (D) + Q (D) P* (D) J (D)] R(D) =

[ − K (D) − Q (D) P* (D) S(D) + Q (D)( I − P* (D))] P (D) (5.7)

In the following theorem, we give conditions that ensure that equation (5.7) has a unique

solution { H (D), K (D), J (D), S(D) } such that { H (D), K (D) } satisfy the design equa-

tion (5.4).

Theorem 5.1

Consider a plant of the form (2.1). Let R(D) and P (D) be the matrices in model (2.2). Let

Q (D) and P* (D) be (m × m) matrices of the form

P* (D) = diag [ pj
* (D)]

Q (D) = diag [ qj (D)]

,

,

deg [ pj
* (D)] = µj

deg [ qj (D)] = ν + µ − µj

,

,

pj
* (0) = 1

qj (0) = 1

for j = 1, 2 , . . . , m, where qj (D) and pj
* (D) are polynomials which have zeros outside the

unit circle.

Then, (5.7) has a unique solution { H (D), K (D), J (D), S(D) } of the form

Hi
j
(D) =

k = 1 + ν + µ − µi − νj

Σ
ν + µ − µi

Hik
j
Dk , Ki

j
(D) =

k = k0 (i, j )
Σ

ν + µ − µi

Kik
j
Dk

Ji
j
(D) =

k = 1 + ν + µ − µi − νj

Σ
ν + µ − µi

Jik
j
Dk , Si

j
(D) =

k = k0 (i, j )
Σ

ν + µ − µi

Sik
j
Dk (5.8)

where Hi
j
(D) denotes the i j–th element of H (D), Hik

j
, Kik

j
, Jik

j
, Sik

j ∈ IRR and where k0 (i, j )

is given by
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k0 (i, j ) =
�
	

 0

1 + µj − µi

for µ j < µi

for µ j ≥ µi
(5.9)

The solution {H (D), K (D), J (D), S(D)} is also the unique solution of (5.4) (5.5) under the

conditions (5.8).

Remark 3: Note that any solution of (5.4), (5.5) is clearly a solution of (5.9). The reverse,

however, is not so obvious. Theorem 5.1 shows that, under the degree constraints, (5.4) and

(5.5) have unique solutions {H (D), K (D)} and {J (D), S(D)} which, together, constitute the

unique solution of (5.7). To achieve this objective, we observe that constraints were

imposed on the lowestas well as the highest degrees of H (D), K (D), J (D), S(D). Further-

more, compared to the scheme of [8], the degrees of the qj (D)’s were increased from ν + µ
to ν + µ − µj . This modification is not necessary for the uniqueness of the solutions of (5.4),

(5.5), but was found to be needed to prove that any solution of (5.7) is a solution of (5.4),

(5.5).

Proof of Theorem 5.1

Preliminaries:

The proof is easier to derive in terms of the forward shift operator, rather than in terms of the

backward shift operator or delay D. In this framework, the proof is also similar to the proof

for model reference adaptive control given in [4], pp. 288. We define

Q
��

(z) = diag [zν + µ − µi ] Q (D) D = z−1

P
��

* (z) = P* (D) D = z−1

diag [zµ j ]

H
��

(z) = diag [zν + µ − µi ] H (D) D = z−1

K
��

(z) = diag [zν + µ − µi ] K (D) D = z−1

J
�

(z) = diag [zν + µ − µi ] J (D) D = z−1

S
�

(z) = diag [zν + µ − µi ] S(D) D = z−1

R
��

(z) = R(D) D = z−1

diag [zµ j ] P
��

(z) = P(D) D = z−1

diag [zµ j ] (5.10)

Note that all these matrices are polynomial matrices in z. The constraints on the degrees of

H (D), K (D), J (D) and S(D) in (5.8) may be shown to be equivalentto the following con-

straints on H
��

(z), K
��

(z), J
�

(z) and S
�

(z)

∂cj ( H
��

(z)) ≤ ν j − 1 ∂cj ( J
�

(z)) ≤ ν j − 1 (5.11)

∂ri ( K
��

(z)) ≤ ν + µ − µi ∂cj ( K
��

(z)) ≤ ν + µ − µj − 1 (5.12)
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∂ri ( S
�

(z)) ≤ ν + µ − µi ∂cj ( S
�

(z)) ≤ ν + µ − µj − 1 (5.13)

The constraints on Q (D), P* (D) are equivalent to

P
��

* (z) = diag [ p
�

j
* (z)]

Q
��

(z) = diag [ q
�

j (z)]

,

,

deg [ p
�

j
* (z)] = µj

deg [ q
�

j (z)] = ν + µ − µj

,

,

p
�

j
* (0) ≠ 0

q
�

j (0) ≠ 0
(5.14)

provided that q
�

i (z), p
�

i (z) are monicpolynomials with zeros inside the unit circle. With these

definitions, (5.4) and (5.5) are equivalent to

H
��

(z) R
��

(z) + K
��

(z) P
��

(z) = Q
��

(z) ( P
��

(z) −P
��

* (z)) (5.15)

J
�

(z) R
��

(z) +S
�

(z) P
��

(z) = zν + µ I − diag [zν + µ − µi ] P
��

(z) (5.16)

while the design identity (5.7) is

( zν + µ H
��

(z) + Q
��

(z) P
��

* (z) J
�

(z)) R
��

(z) = ( −zν + µ K
��

(z) −Q
��

(z) P
��

* (z) S
�

(z)

+zν + µ Q
��

(z) −Q
��

(z) P
��

* (z) diag [zν + µ − µj ] ) P
��

(z) (5.17)

>From the properties of R(D), P (D), it follows that R
��

(z), P
��

(z) are right coprime, with

∂cj (R
��

(z)) ≤ µ j , ∂cj (P
��

(z)) = µj and Γc( P
��

(z)) = P (0) is non singular (where Γc( P
��

(z)) denotes

the matrix whose j–th column contains the coefficients of zµ j in the j–th column of P
��

(z)). It

is a remarkable fact (cf. [10]) that there exists a canonicalpair (R
��

(z), P
��

(z)), such that P
��

(z)

satisfies

∂cj (P
��

(z)) = µj
�
� Γc( P

��
(z)) − I

�
� ij

= 0 i ≥ j

∂ri (P
��

(z)) = µi Γr ( P
��

(z)) − I = 0 (5.18)

Note that the canonical P
��

(z) is not only column-reduced but also row-reduced. Similarly,

there exists a canonical left matrix fraction description(P̃(z), R̃(z)) such that

P̃(z) R
��

(z) = R̃(z) P
��

(z) (5.19)

and P̃(z) satisfies

∂ri (P̃(z)) = νi
�
� Γr ( P̃(z)) − I

�
� ij

= 0 j ≥ i

∂cj (P̃(z)) = νj Γc( P̃(z)) − I = 0 (5.20)

with ∂ri (R̃(z)) ≤ νi . With these preliminaries, we are ready to proceed with the proof of
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theorem 5.1.

Existence:

We first show that there exists a solution that satisfies (5.11). This result is available in the

literature [11], but we give here a brief proof for the sake of completeness. Since R
��

(z) and

P
��

(z) are right coprime, there exist matrices U
��

(z) and V
��

(z) such that

U
��

(z) R
��

(z) + V
��

(z) P
��

(z) = I (5.21)

The general solution of (5.15) is of the form

H
��

(z) = Q
��

(z) (P
��

(z) −P
��

* (z)) U
��

(z) + Q
��

1(z) P̃(z)

K
��

(z) = Q
��

(z) (P
��

(z) −P
��

* (z)) V
��

(z) −Q
��

1 R̃(z) (5.22)

and the solution of (5.16) is

J
�

(z) = �
� zν + µ I − diag [zν + µ − µi ] P

��
(z)

�
� U

��
(z) +Q

��
2(z) P̃(z)

S
�

(z) = �
� zν + µ I − diag [zν + µ − µi ] P

��
(z)

�
� V

��
(z) −Q

��
2(z) R̃(z) (5.23)

where Q
��

1(z) and Q
��

2(z) are arbitrary (m × p) polynomial matrices. From the polynomial

matrix division theorem (cf. [9, p. 389], [4, p. 282]), there exist matrices Q
��

1(z) and Q
��

2(z)

such that

∂cj ( H
��

(z)) ≤ ν j − 1 ∂cj ( J
�

(z)) ≤ ν j − 1 (5.24)

It follows that H
��

(z) and J
�

(z) satisfy the degree constraints (5.11). Concerning the degree

constraints on K
��

(z), we multiply (5.15) on the left by diag [z−(ν+µ−µi )] and on the right by

diag [z−µj ] to obtain

diag [z− (ν + µ − µi )] H
��

(z) . R
��

(z) diag [z− µj ] + diag [z− (ν + µ − µi ) K
��

(z) . P
��

(z) diag [z− µj ]

= diag [z− (ν + µ − µi ) ] Q
��

(z) . (P
��

(z) −P
��

* (z)) diag [z− µj ] (5.25)

Since ∂ri (H
��

(z)) ≤ ν − 1 < ν + µ − µi , and using the properties of R
��

(z), P
��

(z), P
��

* (z), Q
��

(z), it

follows that

z→ ∞
lim diag [z− (ν + µ − µi )] K

��
(z) = I − ( Γc( P

��
(z)) )−1 < ∞ (5.26)

and therefore
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∂ri (K
��

(z)) ≤ ν + µ − µi (5.27)

The other constraint on K
��

(z) is obtained by multiplying (5.15) on the left by z−(ν+µ)

z− (ν + µ) . H
��

(z) R
��

(z) + K
��

(z) diag [z− (ν + µ − µj )] . diag [z− µi ] P
��

(z)

= diag [z− (ν + µ − µi )] Q
��

(z) . diag [z− µi ] (P
��

(z) −P
��

* (z)) (5.28)

where we used the fact that Q
��

(z) is diagonal and that the product of diagonal matrices com-

mutes. Since ∂ri (H
��

(z) R
��

(z)) ≤ ν + µ −1, it follows that

z→ ∞
lim K

��
(z) diag [z− (ν + µ − µj ) ] = I − ( Γr ( P

��
(z)) )−1 = 0 (5.29)

and therefore

∂cj (K
��

(z)) ≤ ν + µ − µj − 1 (5.30)

The proof for the constraints on J
�

(z) follows along identical lines.

Uniqueness:

To prove uniqueness, we first establish that (5.17) can be satisfied only if (5.15) and (5.16)

are satisfied (the converse being obvious). Rewrite (5.17) as

zν + µ �
� H
��

(z) R
��

(z) + K
��

(z) P
��

(z) −Q
��

(z) ( P
��

(z) −P
��

* (z))
�
�

= −( Q
��

(z) P
��

* (z)) �
� J
�

(z) R
��

(z) + S
�

(z) P
��

(z) −zν + µ I + diag [zν + µ − µi ] P
��

(z)
�
� (5.31)

>From the degree conditions and the properties of R
��

, P
��

, note that ∂J
�

ik(z) ≤ νk − 1 ≤ ν − 1,

∂R
��

kj (z) ≤ µ j ≤ µ, ∂S
�

ik(z) ≤ ν + µ − µk − 1, ∂P
��

kj (z) ≤ µk. Further,

∂ ( zν+µ−µi P
��

ik(z) −zν+µ ) ≤ ν+µ−1. It follows that the maximal degree of any element in the

right bracket in (5.31) is ν + µ − 1. However, the elements on the left side have ν + µ zeros

at z = 0. and Q
��

(z) P
��

* (z) is a diagonal matrix with elements that have no zeros at z = 0.

Therefore, (5.31) can only be valid if both sides are equal to zero, i.e., if both (5.15) and

(5.16) are satisfied.

Now, assume that there existed another solution H
��

(z) + δH
��

(z), K
��

(z) + δK
��

(z),

J
�

(z) + δJ
�

(z), S
�

(z) + δS
�

(z). The following homogeneous equations would have to be satisfied

δH
��

(z) R
��

(z) + δK
��

(z) P
��

(z) = 0

δJ
�

(z) R
��

(z) + δS
�

(z) P
��

(z) = 0 (5.32)
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Since R
��

(z) and P
��

(z) are coprime, and since ∂cj (δH
��

(z)) ≤ ν j − 1 and ∂cj (δJ
�

(z)) ≤ ν j − 1, this

implies (cf. [12]) that δH
��

(z) = δK
��

(z) = δJ
�

(z) = δS
�

(z) = 0. �

Expressions for the Structured Nonminimal Model

We now show how the model (5.6) can be put in the form (2.3). The matrices in (5.6) can be

written as follows

H (D) =
k=1
Σ

ν + µ − µmin

HkDk , K (D) =
k=0
Σ

ν + µ − µmin

KkDk

J (D) =
k=0
Σ

ν + µ − µmin

JkDk , S(D) =
k=0
Σ

ν + µ − µmin

SkDk (5.33)

where Hk, Jk ∈ IRRm × p, Kk, Sk ∈ IRRm × m and µmin =
1 ≤ j ≤ m

min { µ j } . Let γ = ν + µ − µmin.

Substitution of (5.33) in (5.6) yields the following parameterization for (2.3)

C (D) = 0 , E (D) = Q (D) [ I − P* (D)] (5.34)

B0(D) = − I , β0 = K 0 (5.35)

while, for j = 1, 2 , . . . , γ :

Aj (D) = D j . I , α j = Hj , Bj (D) = − D j . I , βj = Kj (5.36)

and for j = γ +1 , . . . , 2 γ +1:

Aj (D) = Q (D) P* (D) D j − γ −1 , α j = Jj − γ −1

Bj (D) = Q (D) P* (D) D j − γ −1 , βj = Sj − γ −1 (5.37)

with ma = mb = 2 γ +1, l = ν + µ + γ =2ν + 2µ − µmin , r = m.

The vectors θ
�

i
* , for 1 ≤ i ≤ m, are given by

θ
�

i
* = [Hi 1 , . . . , Hiγ , Ji 0 , . . . , Ji γ ,

Ki 0 , . . . , Kiγ , (5.38)

where Hik , Jik , Kik and Sik are the i–th row of the matrices Hk, Jk, Kk and Sk (which are

defined in (5.33)). The vectors φ
�

i (t), 1 ≤ i ≤ m are given by

φ
�

i
T
(t) = [yT(t − 1) , . . . , yT(t− γ), qi (D) pi

* (D) yT(t− γ),

uT(t) , . . . , uT(t − γ), qi (D) pi
* (D) uT(t − γ)] (5.39)
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where qi (D) and pi
* (D) are the polynomials defined in theorem 5.1. Each of the parameter

vectors θi
* , 1 ≤ i ≤ m, is obtained from θ

�
i
* by deleting the elements that, according to the

conditions in (5.8), are zero. In the same way, we obtain the vectors φi (t) from

φ
�

i (t), 1 ≤ i ≤ m.

6. Stability and Convergence Properties

We now show that the general theorems of sections 3 and 4 apply to the adaptive pole place-

ment scheme. >From theorem 3.1 and theorem 5.1, it follows that all m associated–signal

systems are output–reachable, provided that the degree conditions in (5.8) are satisfied. By

using theorem 4.2, we obtain that all sequences { φi (t) } , 1 ≤ i ≤ m (which are the

associated–signal systems outputs) are persistently exciting, provided that the external input

sequence { v(t) } satisfies condition (4.18). We only need to show that the adaptive version

of the control law (5.3) is of the form of the control law in theorem 4.2.

The adaptive control law is given by

u (t) = Q−1(D) [ H (D, t) y (t) +K (D, t) u (t) ] + v(t)

= H (D, t) y (t) + K (D, t) u (t) + Q (D) v(t) − (Q (D) − I ) u (t) (6.1)

where H (D, t) and K (D, t) are the estimates of H (D) and K (D) at time t. For analysis pur-

poses, it is useful to express (6.1) row by row, using (2.2)

ui (t) = [Hi (D, t) R(D) + Ki (D, t) P (D) − (qi (D) − 1) Pi (D)] ξ(t)

+ qi (D) vi (t) , i = 1, 2 , . . . , m (6.2)

where ui (t) and vi (t) are the i–th component of u (t) and v(t), Hi (D, t), Ki (D, t) and Pi (D)

are the i–th row of H (D, t), K (D, t) and P (D), and where qi (D) are polynomials defined in

theorem 5.1. We will use the following definitions

Hi (D, t) R(D) =
k=1
Σ

ν + 2µ − µi

Ki (D, t) P (D) =
k=1
Σ

ν + 2µ − µi

Mik(t) Dk + Ki (0, t) P (D)

(qi (D) − 1) Pi (D) =
k=1
Σ

ν + 2µ − µi

Nik Dk (6.3)

where Lik(t), Mik(t), Nik ∈ IRRm × m. Substitution of (6.3) in (6.2) yields
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ui (t) =
k=1
Σ

ν + 2µ − µi

[(Lik(t) + Mik(t) − Nik) Dk + Ki (0, t) P (D)] ξ(t) + qi (D) vi (t)

=
k=1
Σ

ν + 2µ − µi

[(Lik(t) + Mik(t) − Nik) ξ(t −k) + Ki (0, t) u (t) + qi (D) vi (t) (6.4)

for i = 1, 2 , . . . , m. Equation (6.4) can be written as follows

ui (t) = F
��

i (t) xa(t) + Ki (0, t) u (t) + qi (D) vi (t) (6.5)

where xa(t) is the state vector of the associated–signal systems defined in (3.1). In this case,

l = 2ν + 2µ − µmin, na = dim [ xa ] = m(l + µ) = m ( 2ν + 3µ − µmin ). F
��

i (t) is the following

(1 × m (2ν + 3µ − µmin)) row vector

F
��

i (t) = [Li 1(t) + Mi 1(t) − Ni 1, Li 2(t) + Mi 2(t) − Ni 2 , . . . ,

Liν + 2µ − µi
(t) + Miν + 2µ − µi

(t) − Niν + 2µ − µi
, 0 , . . . , 0] (6.6)

By writing the m equations (6.5) for i = 1, 2 , . . . , m we obtain

u (t) = F
��

(t) xa(t) + K (0, t) u (t) + Q (D) v(t) (6.7)

where

F
��

(t) = [F 1
T
(t), F 2

T
(t), . . . , Fm

T
(t)]T (6.8)

>From the constraints on Ki
j
(D) in (5.8), it follows that the matrix [I − K (0, t)] is upper tri-

angular and has a unit diagonal for all t. Therefore, its inverse always exists and is also upper

triangular with unit diagonal. Hence, we can write

u (t) = F (t) xa(t) + [I −K (0, t)]−1Q (D) v(t) (6.9)

where

F (t) = [I − K (0, t)]−1F
��

(t) (6.10)

In fact, it can be shown that F(t) is given by

F (t) = [I − K (0, t)]−1

θ1
T
(t)

0

θ2
T
(t)

.

.

.

0

θm
T
(t)

(6.11)
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bold cdot ˜ˆ T sub 1 minus T sub 2 ˆˆ right }

where θi (t) are the parameter vectors estimates of θi
* (cf. (2.8)–(2.10) and after) and where

T1 and T2 are fixedreal matrices, which depend on the elements of R(D), P (D) and Q (D).

Let { ti } be a sequence of integers such that ti = i N, i = 0, 1, 2 , ... where N is a posi-

tive integer to be determined later. The feedback gain matrix is held constant during each

period of length N and the adaptive control law is modifiedso that

u (t) = FN(t) xa(t) + w(t) (6.12)

where

FN(t) = F (ti ) for ti ≤ t < t i +1 (6.13)

w(t) = [I − K (0, ti )]
−1 v

�
(t) for ti ≤ t < t i +1 (6.14)

v
�
(t) = Q (D) v(t) (6.15)

It is known (see [2]) that, with a RLS algorithm with covariance resetting, the estimates θi (t)

remain in a bounded region of the parameter space. By the triangular property of K (0, ti ), it

follows that ( I −K (0, ti ))
−1 is bounded. The matrices T1 and T2 are fixed so that, by (6.11),

FN(t) remains bounded. The sequence { w(t) } in (6.14) depends on the value of K (0, ti ) but

since [I − K (0, t)] is bounded, it follows that if

λmin [V
��

na+1, N−na
(ti ) V

��
na+1, N−na

T (ti )] > ε1 > 0 (6.16)

then

λmin [Wna+1, N−na
(ti ) Wna+1, N−na

T (ti )] > ε > 0 (6.17))

Q (D) being fixed, the external input sequence { v(t) } must be chosen so that (6.16) will be

satisfied. Using theorem 4.2, we obtain the following proposition that summarizes the results.

Proposition 5.1

Consider a linear minimal system (2.1). Assume that the observability indices νi , 1 ≤ i ≤ p

and the controllability indices µi , 1 ≤ i ≤ m are known. Let Q (D) and P* (D) be defined as

in theorem 5.1. Define m estimation equations of the form (2.11), for matrices H (D), K (D),

J (D) and S(D) that satisfy the degree constraints in (5.8). Every parameter vector

θi
* , 1 ≤ i ≤ m is estimated with a RLS algorithm with covariance resetting. The adaptive

control law is given by
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u (t) = Q−1(D) [ HN(D, t) y (t) + KN(D, t) u (t) + Q (D) v(t) ] (6.18)

where HN(D, t) and KN(D, t) are the estimates of the matrices H (D) and K (D), updated

periodically so that

HN(D, t) = H (D, ti ) , KN(D, t) = K (D, ti ) for ti ≤ t < t i +1

where ti = i N , i = 0, 1, 2 , ... and N ≥ m(2ν + 3µ − µmin)(m+1) + m. The external input

sequence { v(t) } satisfies (6.16) (where v
�

(t) is defined in (6.15)).

Then, the transfer matrix of the closed–loop system converges exponentially fast to

Tcl(D) = R(D) P* −1
(D), for every initial state of the system and for all initial conditions of

the estimation algorithm.

7. Conclusions

In this paper, we showed how a multivariable adaptive pole placement algorithm could be

designed so that parameter convergence is guaranteed under persistency of excitation condi-

tions. More generally, it was proved that parameter convergence would follow provided that

a certain design identity was satisfied, so that the results of this paper are applicable to a wide

range of adaptive control algorithms.

An advantage of parameter convergence is that the closed–loop system asymptotically

has the properties for which the controller was designed. In particular, the scheme presented

here does not have the uncertainty of a matrix U (D) found in [8] (present even with per-

sistently exciting signals). On the other hand, more prior information is needed, that is, the

observability indices have to be known in addition to the controllability indices. While the

persistency of excitation conditions were used to assess stability, it is known that such condi-

tions are not necessary to prove stability in adaptive control, but only to prove exponential

convergence of the parameters to the nominal values (cf. [2], [4], and [13], [14] specifically

for adaptive pole placement algorithms). The results of this paper may also be related to the

work of [15], which discusses the minimum value of N in theorem 4.2 for the SISO case, and

to the work of [7], which transforms the persistency of excitation condition into a condition

on the number of spectral components of the inputs (sufficient richness condition) in the case

of multivariable identification. Special signals such that the persistency of excitation condi-

tion is satisfied were also investigated in [16].
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